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With the advent of  Earth-orbiting goedetic satellites, nongeocentric datums or reference 
frames have become things of the past. Accurate geocentric three-dimensional positioning 
is now possible and is o f  great importance for various geodetic and oceanographic applica- 
tions. While relative positioning accuracy of a few centimeters has become a reality using 
very-long-baseline interferometiy ( VLBI), the uncertainty in the offset of the adopted 
coordinate system origin from thegeocenter is still believed to be on the order of  I meter. 
Satellite laser ranging (SLR), however, is capable of determining this offset to better than 
10 cm, but this is possible only after years of measurements. Global Positioning System 
(GPS) measurements provide a powerful tool for an accurate determination of this origin 
offset. Two strategies are discussed in this article. The first strategy utilizes the precise 
relative positions that have been predetermined by VLBI to fix the frame orientation and 
the absolute scaling, while the offset from the geocenter is determined from GPSmeasure- 
ments. Three different cases are presented under this strategy. The reference frame thus 
adopted will be consistent with the VLBI coordinate system. The second strategy estab- 
lishes a reference frame by holding only the longitude of one of the tracking sites fixed. 
The absolute scaling is determined by the adopted gravitational constant (GM) of Earth; 
and the latitude is inferred from the time signature of Earth rotation in the GPS measure- 
ments. The coordinate system thus defined will be a geocentric Earth-fixed coordinate 
system. A covariance analysis shows that geocentric positioning to an accuracy of a few 
centimeters can be achieved with just one day of precise GPS pseudorange and cam'er 
phase data. 

1. Introduction time. Two precision data types can be derived from the GPS 
transmitted signals: P-code pseudorange and carrier phase at 

vide the opportunity to produce geodetic measurements accu- 

Earth orbiters to the subdecimeter level [41 . The ephemerides 

The Operational Positioning System (GPS) will two L-band frequencies [ 2 ]  . These precision data types pro- 
consist of at least 18 satellites distributed in six orbital planes 

in a low Earth orbit, to  view at least five satellites most of the 
[' 1 ' This system a user, anywhere On the Earth Or rate to  the centimeter level [3] and orbit determination of low 

for the GPS satellites, as distributed by Naval Surface Weapon 
Center (NSWC), are based upon the World Geodetic System ?Member of Professional Staff, Sterling Software, Pasadena, CA. 
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(WGS 84) [5] , and their accuracy is on the order of 10 meters 
[6] .  In applications where high precision is essential, the GPS 
satellite orbits need to be adjusted to a much higher precision, 
along with all the other parameters in the network [3] ,  [4]. 
The GPS satellites can be simultaneously observed from several 
sites in a geodetic network. Within such a network a few fidu- 
cial tracking sites are included [7 ] .  The relative positions of 
these fiducial sites are known to a higher level of precision, 
typically a few centimeters, as a result of repeated measure- 
ments of the baselines using very-long-baseline interferometry 
(VLBI) [8] . Based upon these highly precise relative positions 
of the fiducial sites, filter strategies can be designed to adjust 
the satellite orbits to  enhance their accuracy to  far better than 
10 meters [9].  The ephemerides thus adjusted now refer to 
the same coordinate frame in which the fiducial baselines are 
known. It is generally believed that the best VLBI coordinate 
system origin approximates the geocenter to about 1 meter. 
The satellite laser ranging (SLR) technique is capable of realiz- 
ing the geocenter offset to  better than 10 cm, but this is possi- 
ble only after years of observations. 

Although absolute positioning is of less interest for geody- 
namic applications, it can be an important factor when track- 
ing deep space vehicles, and it is essential for orbit determina- 
tion of Earth-observing satellites, such as NASA’s Ocean 
Topography Experiment (TOPEX), to be launched in late 
1991 [ l o ] .  This article investigates two strategies for pre- 
cise determination of the geocenter, thus establishing a geo- 
centric coordinate frame for GPS measurements. In the first 
strategy, GPS P-code pseudorange and carrier phase measure- 
ments are made from a set of globally distributed tracking 
stations. A network consisting of six stations appears to be 
appropriate. Of these, three are the fiducial sites whose relative 
location has been well determined by VLBI. Since it is the 
relative location, rather than the absolute location, of the 
fiducial sites that is well determined by VLBI, only baseline 
coordinates should be fixed to define the orientation and 
absolute scaling of the reference frame. The geocenter posi- 
tion and the coordinates of other, nonfiducial sites are to be 
adjusted together with the GPS orbits. The coordinate frame 
thus defined is consistent with the VLBI frame, with improved 
geocenter offset. Three different cases are discussed under 
this strategy. 

An alternate strategy is to simultaneously adjust the GPS 
orbits and geodetic station coordinates with respect to one 
reference site in the network whose longitude is held fixed. 
The absolute scaling is determined by the adopted gravita- 
tional constant GM of Earth; the station heights are inferred 
from the adjusted periods of GPS orbits and the pseudorange 
measurements; and the latitude is inferred from the time 
signature of Earth rotation in the GPS measurements. The 
coordinate system thus defined will be an Earth-centered, 

Earth-fixed (ECEF) coordinate frame. The solution is free 
from any a priori uncertainty of site positions, and the inferred 
reference frame is strictly self-contained. This type of tech- 
nique has been adopted by the satellite laser ranging (SLR) 
and lunar laser ranging (LLR) communities [ l  11 . The coor- 
dinate origin offset from the geocenter is given by the weighted 
mean coordinate offsets of all stations in the network. 

A covariance analysis was performed estimating the accuracy 
with which the geocenter position can be determined using the 
two strategies. This analysis indicates that the geocenter posi- 
tion can be determined to an accuracy of a few centimeters 
with just one day of precision pseudorange and carrier phase 
data. Such precise knowledge of absolute position of the coor- 
dinate system origin is essential to the orbit determination of 
TOPEX, which requires an altitude accuracy of 13 cm or better. 

II. Coordinate Reference Frame 
A rectangular coordinate system is defined such that the 

Z axis coincides with the mean spin axis of the Earth as de- 
fined by the CIO pole; the X axis lies in the mean equatorial 
plane, w h c h  is perpendicular to the Z axis, and passes through 
the mean Greenwich astronomic meridian as defined by the 
BIH; the Y axis completes the right-handed Earth-fixed car- 
tesian system. The origin of the coordinate system may be 
defined as the center of mass of the Earth. But the imperfect 
knowledge of the geocenter location limits the precise location 
of this origin. 

Figure 1 gives the definition of the World Geodetic System 
84 (WGS 84). The almanac and the ephemerides of GPS satel- 
lites are given in this coordinate system [ 6 ] .  The coordinates 
of the ground stations derived by observing the GPS measure- 
ments will also be in the WGS 84 reference frame. But it 
should be noted that the absolute accuracy of any geocentric 
position determination depends upon the knowledge of the 
location of the geocenter relative to the assumed origin. The 
coordinate system thus defined is an ECEF coordinate system 
which rotates at a constant mean rate around a mean astro- 
nomic pole. Such a system is also called a conventional terres- 
trial system (CTS). However, events occur in an instantaneous 
real world, which is in a coordinate system different from the 
CTS. Therefore it is required to mathematically relate CTS to 
an instantaneous terrestrial system (ITS). This relationship is a 
transformation through a wobble [W] and a spin [SI : 

where the X’s are position vectors. The wobble [W] is given by 
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where R,(p) denotes a matrix of rotation, by an amount p 
about the r axis; x p  a n d y p  define the pole motion. The sign 
convention used is in accordance with the BIH convention. 
The spin is given by 

[SI = RZ(-GAST) (3) 

where CAST is the Greenwich Apparent Sidereal Time given 
by 

CAST = GMSToh UT t 6 ( t d f +  UTI - UTC) 

+ A\k cos E (4) 

GMSToh UT is the Greenwich Mean Sidereal Time at 0 hour 
UT, which is obtained from Newcomb’s equation adjusted 
with respect to  J2000 [ 121 , W is the mean rate of advance of 
the GMST per day, and tdf is the day fraction in UTC of time 
of observation. The last term in Eq. (4) is commonly known as 
the equation of the equinoxes, where A* refers to the nuta- 
tion in longitude and e is the true obliquity of the ecliptic of 
date. 

In general, celestial bodies are expressed in the Conven- 
tional Inertial System (CIS). Position vectors in this system 
can be transformed into ITS through a nutation [N] and a 
precession [PI [ 131 : 

The nutation [N] is given by 

[N] = R,(-E,) RZ(-A*) Rx(eo + AE)  

where E ,  is the mean obliquity of date; the nutation angles 
A\k and AE are computed from IAU 1980 nutation series 121 
expressed with respect to J2000. The precession [PI isgiven by 

(7) 

where tu, e , ,  and tu are the standard precession rotation angles 
[14]. Therefore, the position vectors in the reference frame 
WGS 84, which is one of the CTS, can be expressed with re- 
spect to the CIS using the above transformations. 

The SLR system has matured enough to  establish its own 
independent coordinate system. The dynamic technique used 
to  establish such a system depends heavily upon a precise 
definition of the coordinate frame adopted by the tracking 
network. This includes the definition of polar motion and the 
Earth’s fundamental constants, such as the gravitational con- 
stant (GM), the dynamical form factor (J2),  and the speed of 
light. Because satellite (LAGEOS, STARLETTE, etc.) position 

vectors are described in an inertial frame while ground station 
vectors are described in an ECEF frame, they need to be re- 
lated by the above coordinate transformations. Processing of 
SLR long-arc data has been successful in simultaneously solv- 
ing for station vectors, satellite orbits, and earth orientation 
parameters to precisions of few centimeters. 

111. Strategies to Determine the Origin 
Offset from the Geocenter 

For the past several years the fundamental concept behind 
accurate GPS orbital adjustment has been that of the fiducial 
network [7].  A fiducial network consists of three or more 
tracking stations whose (relative) positions have been deter- 
mined in an Earth-fixed coordinate frame to  a very high 
accuracy, usually by VLBI. Several receivers at other, less 
accurately known, stations also observe simultaneously the 
GPS satellites along with the fiducial network. The data are 
then brought together to simultaneously adjust the GPS satel- 
lite orbits and the positions of the nonfiducial sites. Thus the 
fiducial stations established by VLBI provide a self-consistent 
Earth-fixed coordinate system with respect to  which the 
improved GPS satellite orbits and the nonfiducial stations can 
be expressed to a greater accuracy. At the same time the coor- 
dinate frame origin offset from the geocenter can also be 
estimated using the same set of data. Experience in this area 
has indicated that an over-constrained network, where more 
baselines or sites than necessary are fixed, can in fact produce 
a degraded solution. This is because in an over-constrained net- 
work the a priori uncertainty in the fixed parameters that are 
more than necessary will result in a suboptimal filter weight- 
ing. The solution will then be highly influenced by the mis- 
modeling of these parameters. 

In the first strategy proposed, the fiducial baselines are 
treated in three different ways: 

(A) Fix two fiducial baselines. 

(B) Constrain two fiducial baselines by a priori weighting. 

(C) Fix only one fiducial baseline. 

The baselines define the orientation of the adopted coor- 
dinate frame. The absolute scaling can be fixed either by the 
length of these baselines or by the Earth’s gravitational con- 
stant, GM. Both are known to an accuracy of about one part 
in lo8. The baseline length is used to define the absolute 
scaling so that the resulting coordinate frame will be consis- 
tent with the VLBI frame defined by the fiducial baselines. 
For the case with two baselines fixed, it is rather convenient 
to select one of the fiducial stations common to both fixed 
baselines as the reference site. The filter process is so designed 
that the baselines between the reference site and all other 
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nonfiducial sites are adjusted along with the Earth Orientation 
Parameters (EOP), namely polar motion (x,, y,) and UT1- 
UTC rate. the GPS satellite orbits, and the absolute coordi- 
nates of the reference site, which in turn infer the adjustment 
of the geocenter position coordinates. The Earth's GM is also 
adjusted, although the data strength may not be great enough 
to improve the value of GM appreciably. 

I In the second strategy, the same GPS tracking network of 
globally distributed stations is used. However, only the longi- 
tude of a reference site is held fixed; all other site coordinates 
are adjusted simultaneously with the GPS orbits. Here, the GM 
of Earth provides the absolute scaling. The station heights can 

dorange measurements. The time signature of the measure- 
ments defines the latitude. Figure 2 graphically demonstrates 
the time signature of the measurements for two hypothetical 
cases. The first graph shows the periodic signature generated 

from a stationary receiver. The period is equal to  the GPS or- 
bit period, which is nearly 12 hours, and the amplitude is pro- 
portional to the geocentric position vector of the receiver 
projected onto the orbital plane. The second graph shows the 
case when a stationary GPS satellite is above the equator of a 
spinning Earth. The period is now 24  hours, and the ampli- 
tude is proportional to  the cosine of the receiver latitude. The 
variation of the signature with respect to the receiver latitude 
is depicted in the sketch. Because of the difference in period, 
the effects due t o  the rotation of the receiver can be separated 
from the GPS orbiting signature and the latitude can unam- 
biguously be solved. 

I be derived from the adjusted periods of GPS orbits and pseu- 

I by the pseudorange ( p )  measurements to an orbiting GPS 

~ 

A simple mathematical model can be written out for the 
estimate of geocenter offset. This offset is expressed as the 
weighted mean of the position offsets of all stations. The equa- 
tions corresponding to the geocenter offset AG are represented 
as 

AGx + Axi + vi = 0, x -+y ,z ;  (8) 

i = 1 ,2 ,  . . . ,  n 

where Axi is the x component of the ith geocentric station 
position offset and vi is the error associated with Axi. The cor- 
responding error covariance of the geocenter offset can be 
expressed as 

where 

Var (AG) = [AT W A] -' (9) 
3 x  3 

AT = [ -1-1 . . . -  I] 
3 X 3 n  

and W is a (3n X 3n) weight matrix which is the inverted co- 
variance matrix of the station position estimates. 

IV. Covariance Analysis 
A covariance analysis was carried out to  assess the accuracy 

with which the geocenter offset from the origin of the adopted 
coordinate frame can be determined with each of the approaches 
proposed in previous sections. A full constellation of 18 GPS 
satellites distributed in six orbital planes was assumed. A data 
arc spanning over 34 hours from a network of six globally 
distributed tracking stations was also assumed. The three fidu- 
cial sites are the three NASA Deep Space Network (DSN) 
tracking sites (Fig. 3) at Goldstone, California; Canberra, 
Australia; and Madrid, Spain. The remaining sites in Japan, 
Brazil, and South Africa are nonfiducial sites. Simultaneous 
GPS P-code pseudorange and carrier phase measurements are 
made at all of these stations. The relative positions of the three 
DSN sites have been measured repeatedly by VLBI over many 
years and are known to an accuracy of about 3 cm. Goldstone 
was selected to be the reference site because of its common 
VLBI visibility with the other two DSN sites at Canberra and 
Madrid. P-code pseudorange and carrier phase data noise were 
assumed to  be 5 cm and 0.5 cm, respectively, when integrated 
over 30 minutes and corrected for ionospheric effects by dual- 
frequency combination. 

Carrier phase biases were adjusted with a large a priori 
uncertainty. Table 1 lists the error sources assumed for the 
first strategy. The robustness of the GPS measurements allows 
all the GPS and station clocks to  be treated as white-noise 
processes and adjusted [3] ,  [4] to  remove their effects on the 
solutions. Also adjusted are the zenith tropospheric delays at 
all ground sites, which were treated as random-walk param- 
eters to model the temporal change. Such models have been 
proved to  be effective in removing their errors without ser- 
iously depleting the data strength [ 9 ] .  

The GPS covariance and simulation analysis software sys- 
tem, OASIS [15] ,  recently developed at JPL, was used to  
carry out the study. In OASIS, partial derivatives with respect 
to Cartesian components of site locations and the geocenter 
are readily produced. It is shown in the Appendix that base- 
line partials are related to site location partials as follows. 

(1) The partial derivative with respect to  a Cartesian com- 
ponent of the reference site is the sum of all partial 
derivatives with respect to the same component of all 
sites forming the baselines. Note that this is also the 
partial derivative with respect to  the same component 
of the geocenter position. 
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(2) The partial derivative with respect to  a baseline carte- 
sian component is the same as the partial derivative 
with respect to the same component of the nonrefer- 
ence site forming the baseline. 

Hence, the site location coordinate partials can readily be used 
in place of the baseline coordinate partials, and the geocenter 
offset coordinate partials in place of the reference site abso- 
lute coordinate partials. 

The second strategy assumes the same network of six track- 
ing sites. The estimated quantities are the coordinates of all 
six sites except the longitude of the reference site (Goldstone), 
together with the GPS satellite states, white-noise clocks, 
random-walk troposphere parameters, and carrier phase biases. 
Because the longitude of Goldstone is held fixed, the position 
components need to  be given in a geodetic ccordinate system, 
viz., longitude, latitude, and height. Table 2 lists the assurnp- 
tion variations that apply to  this strategy. Other assumptions 
are kept the same as in Table 1.  With this strategy, the error 
covariance matrix of geocenter offset is given by Eq. (9) in the 
previous section. 

V. Results of Covariance Analysis 
In the covariance analyses for both strategies, data arcs of 

various lengths were used to study the solution convergence. 
In all cases the station at Goldstone was considered to  be the 
reference site, although in the second strategy any of the 
ground sites can be a reference site where the only fixed com- 
ponent is the longitude. 

Table 3 indicates the a priori error associated with the fidu- 
cial baselines, Goldstone-Canberra and Goldstone-Madrid, in 
all three cases of Strategy 1 .  The value o f  GM was adjusted, 
although it was found that the data strength of the GPS mea- 
surements is not great enough to  improve on its a priori value. 
It should be noted that adjusting Earth’s GM makes GPS 
satellite states consistent with the absolute scaling as implied 
by the baselines. 

Figure 4 shows the total error of the origin offset as the 
length of the data span increases from 6 hours to 34 hours for 
Case A. At the end of 34 hours the origin offset error is 4.0 cm 
(rms of all three components). The bar chart shows a rapid 
reduction of error in origin offset between 6 and 12 hours. 
The result continues to  improve after 12 hours but not at a 
very high rate. The reason for this can be seen in Fig. 5 .  After 
12 hours the origin offset error has come down to the level of 
baseline error; data gathered thereafter only gradually reduces 
the effects of data noise. At the end of 34 hours the effect of 
data noise is reduced to  3.4 cm and would continue to  reduce 
as the arc length increases. The contribution of the baseline 

error, however, dropped to  about 2.5 cm after 12 hours and 
remained virtually unchanged thereafter. This indicates that 
the geocenter can be determined only up to  the a priori 
accuracy of the fiducial baselines. Therefore, with this strategy, 
any improvement on the baseline accuracy can improve the 
accuracy of the origin offset from the geocenter. For instance, 
it is customary to  find baselines reported with a higher accu- 
racy in length than in the other two components. When a 
smaller error of 1 cm is assumed for the fiducial baseline 
length, along with 3 cm for the transverse and vertical com- 
ponents, the rms error on the origin offset from the geocen- 
ter reduces to  3.5 cm with a 34-hour arc of GPS measure- 
ments. Figure 6 shows the origin offset error for Case B, where 
the baseline vectors constrained to  their a priori error are also 
estimated. The geocenter offset error after 34 hours reduces to 
3.8 cm. Note that the error involved here is mainly due to  data 
noise alone. Results from Case C, where the Goldstone-Madrid 
baseline is the only baseline fixed, are plotted in Figs. 7 and 8. 
The geocenter offset error after 34 hours is 4.4 cm, which is 
slightly worse than the previous cases. In Fig. 8, however, the 
effect due t o  the fixed baseline reduces t o  2 cm after 12 hours 
and settles at 1.7 cm after 18 hours. The effect due to the 
data noise will continue t o  decrease for longer data arc, but 
the baseline effect will remain unchanged, as shown by Figs. 5 
and 8. When the EOP are not estimated, the geocenter offset 
error after 34 hours is found to  be 4.1 cm. This slight improve- 
ment is due to  reduced data noise effect when fewer param- 
eters are estimated. 

In the second strategy no tracking site coordinates, except 
the longitude of the site at Goldstone, were held fixed. Here, 
as before, simultaneous adjustment of all GPS satellite states, 
tracking site coordinates, carrier phase biases, and zenith 
tropospheric corrections were carried out for various arc 
lengths ranging between 6 and 34 hours. Figure 9 plots the 
variation of the rms error of the origin offset from the geo- 
center with respect to the data arc length. The errors affect- 
ing the origin offset from the geocenter in this strategy are the 
data noise and the GM of Earth, which defines the absolute 
scaling. At the end of 6 hours the rms error of the origin off- 
set is 143.7 cm, which reduces to  8 cm at the end of 12 hours. 
This indicates that the control on the absolute scaling and the 
orientation in latitude is greatly improved after all the GPS 
satellites have been tracked by the globally distributed sites 
for a complete orbit cycle. At the end of 34 hours the rms 
error reduces to  2.1 cm. The graph shows a strong trend of 
decreasing rms error as the arc length increases. This indicates 
that the origin offset determination is limited only by the data 
noise. This result can be compared with Case C of  Strategy 1 
when EOP are not estimated; there is about a 50% improve- 
ment in the geocenter offset error with this method. The 
Earth’s GM is known accurately enough so that its effect is 
on the order of 0.2 cm after 12 hours and is 0.1 cm at the end 
of 34 hours. 
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In the analysis of Strategy 2 ,  the effects of polar motion 
and UTI-UTC have not been included. However, GPS mea- 
surements are insensitive to  any constant UTI-UTC bias error. 
The analyses done with different cases of Strategy 1 have indi- 
cated that a constant bias for polar motion and a UTI-UTC 
rate can be included in the filter as additional adjusted param- 
eters without significantly degrading the performance. 

VI. Effect of Coordinate Frame Origin Offset 
on Orbit Determination of Low Earth- 
Orbiting Satellite 

To gain further insight into the significance of accurate 
definition of geocenter, the effect on the radial position of a 
low Earth-orbiting satellite, in particular TOPEX, was studied. 
The error assumptions used are the same as given in Table 1 
except for those parameters listed in Table 4. The result pre- 
sented by Case C of Strategy 1 shows that the origin offset 
accuracy is 4.4 cm (Fig. 7) with only one baseline fixed and a 
data arc of 34 hours. This value is the most pessimistic of all 
the results presented. Here, the origin offset was assumed to 
have an error of 4 cm in each component and left unadjusted. 
A reduced dynamic tracking technique [I61 was implemented 
in the study where a fictitious 3-D force on TOPEX was 
adjusted as process noise with constrained a priori uncertainty. 
Figure 10 plots the error in the radial component of TOPEX 
caused by various sources. The total error in TOPEX altitude 

shows the altitude error variation with time, along with the 
part contributed by a 4-cm geocenter uncertainty, over the 
2-hour arc. Without the refinement with GPS measurements, 
the geocenter position uncertainty would be greater than 
10 cm, and the TOPEX altitude determination error would 
be greater than 14 cm. 

I 

I 

l over the 2-hour arc has an rms value of 9.7 cm. Figure 11 

I VII. Summary and Conclusions 
A geocentric coordinate frame provides a practical global 

reference system with a physically meaningful and unambigu- 

ous definition of the coordinate origin. Two basic strategies 
for establishing a geocentric coordinate frame for GPS mea- 
surements have been investigated. All three cases of the first 
strategy make use of the precise relative positions which have 
been predetermined by VLBI to fix the frame orientation and 
the absolute scaling, while the offset from the geocenter is 
determined from GPS measurements. The reference frame thus 
adopted is consistent with the VLBI coordinate system. The 
second strategy establishes a reference frame by holding only 
the longitude of one of the tracking sites fixed. The absolute 
scaling is inferred by the adopted gravitational constant (GM) 
of Earth; the orientation in latitude is inferred from the time 
signature of Earth rotation in the GPS measurements. The 
coordinate system thus defined is a geocentric Earth-fixed 
coordinate system. The covariance analysis has shown that 
geocentric positioning to an accuracy of a few centimeters can 
be achieved with just a one-day arc of precise GPS pseudo- 
range and carrier phase data. 

Each of the two strategies has its advantages in different 
applications. The first strategy should be adopted in applica- 
tions requiring a coordinate frame consistent with the VLBI 
reference frame. Among these applications are the monitoring 
of crustal motions in areas which have been investigated by 
VLBI observations and the determination of the Earth rota- 
tion parameters, viz., polar motion and variation of UTI-UTC. 
The second strategy, which holds the longitude at a reference 
site fixed, strictly limits itself in an ECEF frame established 
by the adopted values for the fixed longitude and the GM of 
Earth, and by GPS measurements. This method provides a 
superior result as long as the precise applications are within 
the same ECEF frame. Applications in which such an ECEF 
coordinate frame can be adopted include datum definition and 
network densification in an area where ECEF coordinates are 
appropriate. Various topographic and oceanographic surveys 
and prospecting surveys can benefit from its simplicity. In 
TOPEX orbit determination, this method can also be very 
convenient if a CTS frame such as WGS 84 is adopted. 
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Table 1. Error sources and other assumptions for Strategy 1 
(fixing baselines) 

Reference site: 

Other fiducial sites: 

Nonfiducial sites: 

GPS constellation: 

Cutoff elevation: 

Data type: 
Data span: 

Data interval: 

Data noise: 

Carrier phase bias: 
Clock bias: 

GPS epoch state: 

Geocenter position: 

Baseline coordinates: 

Zenith troposphere: 

Earth's GM: 

Solar pressure: 

(UT1-UTC) rate: 

Polar motion ( x p , y p ) :  

Goldstone 

Canberra, Madrid 

Brazil, Japan, South Africa 

18 satellites in 6 orbital planes 

10 degrees 

P-code pseudorange; carrier phase 
6-34 hours 

30 minutes 

5 cm-pseudorange; 0.5 cm-carrier 
phase 

10 km (adjusted) 

3 Msec-white noise (adjusted) 

10 m;  1 mm/sec (adjusted) 

10 m each component (adjusted) 

3 cm each component-fiducial; 
10 cm each component-nonfiducidl 
(adjusted) 

Random walk parameter (adjusted): 
20 cm bias; 1.3 cm batch to batch 

One part in 10' 

10% 

10 m/day (adjusted) 

10 m (adjusted) 

Table 2. Variations of assumptions from Table 1 for Strategy 2 
(fixing only one longitude) 

Reference site: Goldstone 

Reference site coordinates: 10 m (latitude) 

10 m (height) 

10 m each component 

(adjusted) 0 m (longitude) 

Other site coordinates: 
(adjusted) 

Table 3. Fiducial baselines in Strategy 1 

Case Baselines Adjusted a priori 

A Goldstone-Canberra no 3 cm 
Goldstone-Madrid no  3 cm 

B Goldstone-Canberra Yes 3 cm 
Goldstone-Madrid yes 3 cm 

C Goldstone-Canberra yes 10 cm 
Goldstone-Madrid no 3 cm 

Table 4. Variations of assumptions from Table 1 for TOPEX 
orbit determination 

Data span: 2 hours 

Data interval: 5 minutes 

TOPEX epoch state: 

3-D force on TOPEX: 

1 km; 1 m/sec (adjusted) 

Process-noise (adjusted): 
0.50 pm/s2 bias; 
0.35 pm/s2 batch to batch 

Gravity: 50% of current uncertainty 
(20 X 20 lumped) 

Geocenter: 4 cm each component 
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Fig. 2. Time signature of GPS measurements. 
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Fig. 3. A global GPS tracking network. 
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Fig. 4. Convergence of geocenter offset determination using 
Case A of Strategy 1 (two baselines fixed). 
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Fig. 5. Breakdown of geocenter offset determination error using 
Case A of Strategy 1 (two baselines fixed). 
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Fig. 6. Convergence of geocenter offset determination using 
Case B of Strategy 1 (two constrained baselines). 
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Fig. 7. Convergence of geocenter offset determination using 
Case C of Strategy 1 (one baseline fixed). 
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Fig. 8. Breakdown of geocenter offset determination error for 
Case C of Strategy 1 (one baseline fixed). 
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Fig. 9. Convergence of geocenter offset determination using 
Strategy 2 (longitude at Goldstone fixed). 
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Fig. 11. Total TOPEX altitude error and effects of 4-cm geocenter 
error over a 2-hour period. 
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Appendix 

Measurement Partial Derivatives with Respect to Baseline Components 

Let the Cartesian coordinates of the set of N tracking sites 
be (X 1 ,  Y 1 ,  z1  1, (x2, Y ,  , z 2 ) ,  . . . , (x,, Y,, z N ) .  We can form 
the following baseline components: 

j = 2 , 3 ,  . . .  , N  

where site 1 has been selected as the reference site with which 
all baselines are formed. For completeness, we also define 

for the reference site. For simplicity, but without loss of 
generality, partial derivatives with respect to  only the x-com- 
ponent of baselines will be derived. The relation for the other 
two components follows directly. These equations can be 
rearranged as 

from which the following partial derivative can be formed: 

where l j i i  is the Kronecker delta. The partial derivative of a 
measurement R with respect to  the baseline components b, 
can be expressed in terms of those with respect to the site 
coordinates xi by the following chain rule: 

aR - aR aR aR t--+...+- 
a b x , ,  ax, abx, i  ax, d b x , i  ax, abx,l 

('4-5) 

which, with the substitution of Eq. (A-4), becomes 

j = 2 , 3 ,  . . .  , N  

Hence, the partial derivative of the measurement with respect 
to a Cartesian component of a baseline is the same as that with 
respect t o  the same component of the nonreference site form- 
ing the baseline; and the partial derivative with respect to  a 
component of the reference site is the sum of all partial deriva- 
tives with respect to the same component of all sites forming 
the baselines. 
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